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A Linear Scheme for the Numerical Solution 
of Nonlinear Quasistationary Magnetic Fields 

By Milos Zlamal 

Abstract. The computation of nonlinear quasistationary two-dimensional magnetic fields leads 
to the following problem. There exists a bounded domain Q and an open nonempty set 
R C U. We are looking for the magnetic vector potential u(x1, x2, t) which satisfies: (1) a 
certain nonlinear parabolic equation and an initial condition in R, (2) a nonlinear elliptic 
equation in S = Q-R, (3) a boundary conditon on ai and the condition that u as well as its 
conormal derivative are continuous across r = aR n aS. This problem is formulated in an 
abstract variational way. We construct an approximate solution discretized in space by a 
generalized Galerkin method and by a one-step method in time. The resulting scheme is 
unconditionally stable and linear. A strong convergence of the approximate solution is proved 
without any regularity assumptions for the exact solution. We also derive an error bound for 
the solution of the two-dimensional magnetic field equations under the assumption that the 
exact solution is sufficiently smooth. 

1. Introduction. For two media the computation of nonlinear quasistationary 
two-dimensional magnetic fields leads to the following problem: There exists a 
two-dimensional bounded domain i2 and an open nonempty set R C U. We are 
looking for the x3-component u =u(x1, x2, t) of the magnetic vector potential such 
that 

au 2 a( au\ 
at-El v-x)+J inRX(O,T)O<T< 

u(x1, x2,O) = u0(x1, x2) in R, 

(1.2) ?- = j} ax p-ax + J in S X(O, T), S =Qg- R 

u satisfies a boundary condition on as X (0, T) and 

(1.3) [Is = [Pau o on F X (O, T), F = aR n aS. 

Here the conductivity a = a(x1, x2) is a positive function on R, the reluctivity 
v = v(xl, x2,lIgrad uI12) (I grad uII2 =22(au/ax1)2) is a positive function on 0 X 
[0, x), J = J(x1, x2, t) is a given current density, uo = u0(x1, x2) is a given initial 
value of the x3-component of the magnetic vector potential and n denotes the 
normal to F oriented in a unique way. The derivation of (1.1) and (1.2) from 
Maxwell's equations is, e.g., given in Demerdash and Gillot [101. 
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In Zlamal [9] there are given two equivalent abstract formulations of the above 
problem. A fully discrete approximate solution is constructed and a weak conver- 
gence is proved. The scheme for the approximate solution is nonlinear. In this paper 
the hypotheses on relevant spaces and differential operators are strengthened. On 
the other hand, the scheme for the fully discrete approximate solution is uncondi- 
tionally stable and linear; more exactly the corresponding matrix is the same at each 
time step. In case of the Dirichlet homogeneous boundary condition it is derived 
from the equation 

(1.4) ( a 2 + a(u, v) = (J, V)L2(a), a(u, v) v 2 Vax axdx, 

which is true for all v E V = Ho((Q) (it follows by multiplying (1.1) and (1.2) by v, 
by integrating over R and S, respectively, by using Green's theorem, by summing up 
and by taking into account (1.3)). We add the bilinear form 

l(u, V) - O _ Mfd dx 
M= R,S I= I a_Xl axi 

to both sides of (1.4), where OM (M = R, S) are positive constants, and we 
discretize in space by the Galerkin method. Denoting by U the semidiscrete solution, 
we get 

(1.5) au v + l(U, v) = (U, v) + (J, V)L2(g) V e Vh; 

here w(u, v) = l(u, v) - a(u, v), Vh V is a family of finite-dimensional ap- 
proximations of the space V and U E Vh. The discretization in time is carried out by 
applying the implicit Euler method to the left-hand side and the explicit Euler 
method to the right-hand side of (1.5). The final scheme is 

(1.6) (Ui - Ui1, GV)L2(R) + Atl(Ui, v) 

= Atw(Ui', v) + At(J'', V)L2(g) VV E Vh; 

here the index i denotes the value of the corresponding function at the time ti = iAt, 
i = 0, 1. The scheme (1.6) cannot be used for i = 1 as the initial value u( is 
known on R only. U' has to be computed by the nonlinear scheme (4.4). Let us 
remark that the idea of implicit-explicit methods goes back to Douglas and Dupont 
who proposed in [4] the Laplace modified method for the solution of the nonlinear 
heat equation. Recently, Crouzeix [3] proposed a general scheme of an implicit-ex- 
plicit linear multistep method. We prove a strong convergence of the approximate 
solution to the exact one in two norms for the abstract variational formulation of the 
problem without requiring any smoothness of the exact solution. The conditions of 
the main theorem are satisfied for the problem (1.1)-(1.3) if the reluctivity v and the 
constants EM satisfy (2.4) and (3.1), respectively. Under these conditions we also 
derive an error bound assuming, of course, that the exact solution is sufficiently 
smooth. The condition EM > 2 CM is almost necessary in the following sense: if 
v = const, then EM ' 2 CM is necessary (as well as sufficient) for the scheme (1.6) to 
be unconditionally stable. 



NONLINEAR QUASISTATIONARY MAGNETIC FIELDS 427 

The abstract variational formulation covers the three-dimensional nonlinear quasi- 
stationary magnetic field as well. The magnetic vector potential u is now a vector 
u = (ul, u2, u3)T with ui = U i(X, X2, X3, t) and it satisfies (see [10]): 

(1.7) =a =-curl(vcurlu) + J in R X (0, T), 

U(X X21, X3,0) = U0(X1, X2, X3) in R, 

(1.8) 0 = -curl(vcurlu) + J in S X (0, T), S = a-R, 

u satisfies a boundary condition on aQ X (0, T) and 

(1.9) [(curlu)Tn] =R , [vcurlu X n]=O onFx(,T), 

F = aR n as. 
Here n is the unit normal vector to F oriented in a unique way, u X v and uTv (the 
superscript T denotes transposition of a vector or of a matrix) denote the vector and 
the scalar product, respectively, and v = v(xi, X2, X3, 1Icurl U12). For the boundary 
condition u = 0, the equation corresponding to (1.4) has the form 

( at)(L + a(u,v) = (J,V)(L2(Q))3, 

(1.10) 8~~ ~~t (L2(R))3 

a(u, v) = fv(curl u)Tcurl v dx, 

which is true for all v E V = (Ho(Q ))3. (1.10) can be derived in the same way as 
(1.4). Adding the bilinear form 

l(u, V) = 2 OM (curl u, curl v)(L2(M))3 
M= R,S 

to both sides of (1.10) and discretizing in space and in time as before, we get the 
linear scheme 

( 1.) (AUi, UV)(L2(R))3 + Atl(Ui, V) 

- Atw(U . V) + At(J , V)(L2(g))3 Vv E Vh, 

where Vh - V is a family of finite-dimensional approximations of the space V = 

(H '(Q))3, w(u, v) = l(u, v) - a(u, v). Again, the conditions (2.4) and (3.1) are suffi- 
cient for applying the abstract convergence result. 

2. General Formulation of the Problem. First, we introduce some notations. 
H k(a), k = 0, 1,..., denotes the usual Sobolev space, Hk(2) = {v E L2(g); Dat 
E L2(Q) V Ia I k), provided with the norm IIVIIHk(g) = <kjjD av11L2(g). Hok(2) is 
the closure of 6D(U2) in the norm 1 IIHk(g), H-k(U) = (Hok(a))' provided with the 
dual norm. If X is a Banach space normed by 1l - lx and p 2 1, we denote by 
LP(O, T; X), 0 < T < oo, the space of strongly measurable functions f: (0, T) -- X 
such that 

If ||ILP(o,T;X) = [T lf(t) Il dt]/P < oo, 

with the usual p = oo modification. By C([O, T]; X) we denote the space of 
continuous functions f: [0, T] -- X normed by Ilf iic([o,T];.x) = maxte[o, T]llf(t)iix, 



428 MILOS ZLAMAL 

and by C0"([O, T]; X) the space of Lipschitz continuous functions. If u E 
L'(0, T; X), we denote by u' the weak or generalized derivative of u (see Temam 
[8, Lemma 1.1, p. 250]). 

Now, we introduce three requirements concerning relevant spaces, differential 
operators and data. 

A. Let HM. M = R, S, be two (real) Hilbert spaces with scalar products (, 
(the induced norms are denoted by I IM), and let the Hilbert space H HR X HS 
(with elements [vR, VS], VR C HR, vS G HS) have the scalar product (-,) such that 
the norm I v l= (v, v)'/2 is equivalent with I VR IR + I vS IS Further, let V C H be a 
separable Hilbert space normed by II 11, and let the vector spaces VM = { W = 
VM, v e V} be subspaces of the Hilbert spaces BM C HM normed by 11j IIM. Let 

(( -))I'M be bilinear symmetric positive (not necessarily definite) forms on VM X 
VM, VM being the closure of VM in BM. Then lIvIII = [IIvRIII R + IIvSIQI'S2 with 
IIVMII ,M ((VM VM)) ,M is a seminorm on V X V. We require that 

II VMII IM< CII VMIIM II VRIIR + IIVSIIS < CIIV II 

IIVII I + XIVRIR >- PIIVII C, X, P const > 0J 

We denote by VR the closed subspace {oI Co VR, V E V, VS O ?} of VR, and we 
assume VR to be dense in HR and VR to be compactly imbedded in HR. 

Example 1. Let 2, R, S be domains introduced in Section 1 with Lipschitz 
boundaries. We choose HM= L2(M), (U, V)R = (au, v)L2(R), where a EL 

a > 0 > 0, 

(u, V)S = (u, V)L2(S); H = L2(1), (U, V) (U, V)L2(g), V = Ho(2)9 

VM ={o '0 H'(M), lanaM = 0) iiViiM =IIVIIH1(M), 

2 au av 2 
_a 

2 ~ / 

((U, V%)Im = I( 2 aa dx dX, llUl,I={ a dx} 

In three dimensions we take 

HM = (L (M)), (u, V)R = ((U,V)(L2(R))3, (u, V)S = (U, V)(L2(S))3, 

H= (L2()), (U, V) (U, V)(L2(Q))3, V= 

VM = {A)) e (H(M))3; COlaunaM = 0), ikViiM IIVII(HI(M))3, 

((U, v , m) M (curl u, curl v)(L 2(M))3, ||Ull I II |CUrlUll(L 2(g))3. 

As VR is dense in HR, VR is also dense in HR. We identify HR with its dual spacf 
by means of its scalar product (- )R. From the continuous imbedding of VR into H, 
it follows that HR can be identified with subspaces of VR and of VR, and we havy 
inclusions VR C HR C V, VR C HRC VR where each space is dense in the followin 
one and the injections are continuous. Furthermore, the scalar product < ) R in th 
duality between VR and VR is an extension of (, )R i.e. 

U, V) R (U, V)R if u EH VR 

We denote the scalar product between V' and V by K*, > and between Vs and Vs t 

< )s 
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B. Let AM(9p), M R, S, be gradients of the functionals JM(T) defined on VM 
and having Hessians HM(w). Further, let 

(2.2) JM(O) = 0, Am(O) = 0 

and 

K(HM(w)p, #)Mj < CMjj99jj mjj jj ,m 

(2.3) KHM( w)cp, cp)M c> 
c Vw,q 1. M 

(HS(w), ()S > Vw E VS 

V() C VS = vW I = VS, V V, VR }, (P 0, O < CM < CM < X. 

C. Letf M, M = R, S, be functionals from C?'([O, T]; VPM) and uo E HR. 

Example 2. We consider the spaces of Example 1 and the problems (1.1 )-(1.3) and 
(1.7)-(1.9). In applications, v(x1, x2, 1) is of the form v(x1, x2, ) vM() on M 
with vM(() E C'([0, o)). Then 

Am((p) =v-mz aa [vM(IIgrad (P112) a' 
2 

A( p q'P). + M = M vM(IIgrad 112) aadx, i~~~1 ~xi xi 

JM((P) f FM(IIgrad (P112) dx, 
M 

where FM(() JoIsvM(s) ds. In three dimensions 

Am((P) curl(vM(IIcurl q112)curl qg), 

(Am( ),')M JVM(||curl1q9|2)(curl 9 ) curl 4 dx? 

JM(T) f FM(IcurkII92) dx. 
M 

We shall prove in the last section that B is satisfied if 

(2.4) CM < df [(VM(()] < CM VT C [O, oo). 

The last notations which we need are 

WR {u(ful e L2(0,T; V); uR C L2(0,T;VR)}, 

a(u, v) = AR (UR)I VR)R + (AS(us) vs)S s U, v C V 

Kf, V)KIfR,VRRKf,S) vV. ( f,V )= (f ,VR ) R + ( f SI VS ) S VV E V 

The abstract problem in which we are interested can be formulated in two equivalent 
(see [9]) ways as follows: Find u C WR such that 

(P) U + AR(uR) f R, u(O)Ru AS(us) = fS 

or 

(P') 
d 

(UR, VR)R+ a(u, v) (f, V ) in 6D'((O, T)) Vv E V, U(0)R = UO. 
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If the condition A is satisfied then it is easy to see that the condition 1) of Theorems 
1 and 2 of [9] is fulfilled. We shall later show that if also B is satisfied, then the 
assumptions 2,3,4,5 of the mentioned theorems are fulfilled (with p = 2 and 
[v] = IIvIII). Therefore, the problems (P) and (P') are equivalent and there exists just 
one solution of these problems. 

3. Approximate Solution, Convergence. To define the approximate solution we 
discretize (P') in space and in time. The discretization in space is carried out by 
means of a generalized Galerkin method (see Necas [7, p. 47]). To this end we 
assume that there exists a family {Vh}, 0 < h < h*, h* > 0, of finite-dimensional 
subspaces of V such that 

D. limh-O+ dist(Vh, v) = 0 Vv E V 

(see three remarks following Eq. (3.22) in [9]). We also consider a partition 
O = to < t1 < t2 < tr = T of the interval [0, T], where ti = iAt, i = O,...,r, At= 
T/r. We choose the constants EM to satisfy 

(3.1) E)M> 2CM. 

We denote 

(3.2) {f(u, v) = EOR((UR, VR))AR + E0S((US, VS))I,S 
w(u, v) = 1(u, v) - a(u, v) 

and we write (P') in the form 

-) (URI VR)R +(U,V)= (U, V) + ( fV) in 6D'((O, T)) Vv vE, 

U(O)R = UO. 

Discretizing in space and integrating the left-hand side of (3.3) by the Euler implicit 
method and the right-hand side by the Euler explicit method, we get a scheme which 
is linear: 

( 4) {UR' - UR' , R)R + &t'(Ui, V) = AtW(Ui 1, V) + At (f i,V) 

Vv E Vh, i > 2. 

The existence and uniqueness of U' E Vh follows from the fact that the quadratic 
form (vR, VR)R + Atl(v, v) is bounded from below by cAtlV11v2 (in the sequel, c and 
C denote generic positive constants which do not depend on 8 = (h, At) and which 
are not necessarily the same at any two places). The boundedness is a consequence 
of the inequality 

(3.5) IVRI| + CCAtIIvl > c1(C1, )AtIIVII2 Vv EV 
which is true for any Cl > 0 and for At < c2(X, C) owing to the third inequality of 
(2.1). 

In (3.4) we cannot choose i = 1 as u(O)s is not given. Therefore, U' must be 
defined in a different way. Before doing this we introduce the last assumption. 

E. The initial value uo belongs to VR, i.e. there exists g E V such that UO = gR. 
Evidently, if E is satisfied, then from D it follows that there exists gh E Vh such that 
Uo - gRIR ?, Ilghll < Cfor0 < h < h*. 
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U' is defined as follows: 

(3.6) (UR' - UR I VR)R + Ata(U', v) = At( f,v) v EV, U=g 

(3.6) is a nonlinear scheme considered (for arbitrary i 2 1) in [9]. Hence, the 
existence and uniqueness of U1 follows from Theorem 2 of [9]. 

Remark. In computations we do not need to know the extension g of uo which one 
can see at first glance from (3.6). We need gh only, and we can choose gh = the 
interpolate of uo. 

We extend the approximate solution on the whole interval [0, T]: 

Us = Ui'X + t il1 (Ui - U'-') in [ti_, t,], i 1,... 
(3.7) ~~~At 

U0 = gh, 8 = (h, At). 

Evidently Us E C([O, T]; V). 

THEOREM 3.1. Under the conditions A, B, C, D, E and (3.1) the approximate solution 
Us is uniquely determined by (3.4), (3.6) and (3.7), it belongs to C([O, T]; V) and 

(3.8) | |UR - URjIC([O,T];HR) 0 IIU - UIIL2(o TV) 0 if 8 -O 0; 

here u is the unique solution of the problem (P') and u E L?(0, T; V). 

Proof. (a) We use the compactness method (see Lions [6] and the references given 
there). We show that from any sequence (U6-j) of the family (U6) with -j 0 one 
can choose a subsequence U'Wxo such that 

(v) ? IIUR - URJ8( )|C([O,T];HR) -? 0, IIU - UJ(v)IL2(0, T, V) -O4 0 

and that u is a solution of the problem (P'). As (P') has a unique solution, (3.8) 
follows. 

(b) From Taylor's formula (see, e.g. Cea [ 1, p. 52]) and from (2.2) it follows that 

J (mg) = 2(Hm(499)99, 99)m, OC 4< 1. 

Hence by (2.3) 

1CMIIcII,2 M JM( ) < 2CM19M1 

Setting J(v) = JR(vR) + JS(vs), we see that 

(3.9) 2 Collvll 12 Jv)s 2 CI 12 aVv E V, 

cO =min(CR, cS) > 0, CO = max(CR CS)- 

Further, 

aM(cp 4,) (AM(z)), 74)M = (Hm )M9 0 <, < 1. 

Therefore, 

|am(q, 0)l -- CM11IMI1IX M||+| IM, a (m) C I'M.I M 

Also 

aM(cp, t) - aM(4, t) = (HM(P + 4(qg - 4))(p - 4), w)m. 
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Thus 

laM(cp, ) - aM(4, w)l < CMIIp - IIi,MIoIjI,1M 

and 

aM(cp, qp - 4) - a m(4, qp - 4M) , C1I -II1M 

so that aM(cp, 4) are monotone and aS((p, 4) fulfils (3.7) of [9]. It follows that 

J a(u, v)| sC0jjujjjjjvjjj, a(u, v) -> c0jjuj 

(3.10) a(u, u - v) - a(v, u-v) - I -VII1, 

L Ia(u, w) - a(v, w)j < Collu - vIlll|wIl1 Vu, v,w C V. 

Obviously, the assumptions 2,3,4,5 of Theorems 1 and 2 of [9] (with p = 2 and 

[v ] = I v1) are satisfied. Further, 

aM(cp, 4 - ) + JM(p) - JM(4) = (AM(p), 4 - ) + JM(p) - JM(4) 

I 
(Hm(9 + O(+ - m)+ , 0 < M' 1 

Hence 

M( \;, - ) + JM('[)) _-JM('1) >- CM||( _ AI12 a (>p4,2p 

so that 

(3.11) a(v, u - v) + J(v) - J(u) -2[CRIIuR - VRIIR + CSIIUS VSII2jS. 

We set 

(3.12) KM = M2CM- 

We have KM > 0 owing to (3.1), hence 

(3.13) Ko = min(KR, Ks) > 0. 

From (3.11) it follows that 

(3.14) l(u-v, u-v) + a(v, u-v) > KoIU-VII2?+ J(u) -J(v) Vu, v c V. 

(c) First, we prove that 

(3.15) IIUl s C. 

Choosing v = Ul - gh in (3.6), we get (using the inequality ab < 'Oa2 + ?-O'b2, 

O > 0), 

U - R + A\ta(Ul - ghUl - gh) 

= At[a(U' - gh, Ul - gh) - a(Ul, Ul - gh)] 

+CO-,At + COAt||Ul - gh129 O > 0. 

From (3.10) and from the assumption E it follows that 

|UJ - gR + C0LtlUl - gh|12 ?CoAt||Ul - gh|12 + CO-'LAt + CAtU -1 ' hl2. 

By (3.5) 

C1lt| Ul - gh|| ? Ci9LAt + C2i9At|U1 - gh|12 



NONLINEAR QUASISTATIONARY MAGNETIC FIELDS 433 

Setting O = c1/2C2, we get IIU' - ghj12 < C. (3.15) is a consequence of this estimate 
and of the assumption E. 

Now, we prove the following inequality: 

(3.16) 2 RR + c/t 
2 

IIAUjII2 + C/t|| UmI12 
1=2 i=2 

m 

C/t + CAt2 :: || U1112, 2 <,:: m < r; 
i=2 

here, AXU' U' -U'' and the positive constants c, C do not depend on 8 and on 
m. We choose v A U' in (3.4), write this equation in the form 

II R + Atl(\U', z U') + Avta(U', zAU') = /t(f', /UI), 

and we use (3.14). We get 

R + KoAtIIZAUII2 + At[J(Ui) -J(U-)] ? zt(f', LW'). 

Applying (3.5) to 2{| /UR + 2Ko/tII U'||l), adding to both sides (/\UR, UR)R and 
summing up, we get easily 

~ + cl 2 + CtU1+ II UI + J(U ) - 2 J(U')] 
2I=2 I=2 

< At 
t,(AUR, UR ) R + 'At ( f , UI 
i=2 i=2 

By (3.9), (3.5) and (3.15) 

ln +J(U",) cl ClUmll UR RU + J(U') < Cilll2 < C. 

Estimating the first term on the right-hand side by 

4 z |UR| R + Cz\t2 E 11 U112, 
4*=2 i=2 

we come to the inequality 
"I ~~m 

(3.17) 
2 

UAUR + cL\t 
: 

IIAUjII2 + C2tIIUtmI12 
*=2 i=2 

rn n 

<CAt2E 1 U'112 +CAtE (f1-I AU') 
i=2 i=2 

As 

m m-1 

A\t f ( t ,AU ) -At f 1,U )+ At( f m- I um) 'At :: ( Af i uX 
,=2 i=2 

and f & C? 0([O, T]; V'), we have 
m m-1 

At 2 (f p, IAU) < C"'At + C2#9t|1 UmII2 + cxt2 : IIujII2. 
i=2 i=2 

Setting O = C2/2C2, we arrive at (3.16). 
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(d) The first consequence of (3.16) is that 11Um112 ? C + C/tn72llUill2. By the 
discrete Gronwall inequality and by (3.15) llUnmll < C for 1 < m < r, hence 

(3.18) |Ua(t)|| < C Vt E [0, T]. 

Further, 

(3.19) At ?< CAt 
i=2 

and 2L2 21 AURI R < CAt. This does not mean anything other than 

(3.20) fTda dt < C. 
o R 

We shall consider sequences of functions from the family {Ua8 and their subse- 
quences. We shall leave out subscripts and use always the same notation (Ua) for 
these subsequences, and always 8 is such that 8 - 0. 

From (3.18) and from the well-known compactness theorem (see, e.g., Cea [1, p. 
26]) it follows that there exists a subsequence (Ua8 and an element u E L?(O, T; V) 
such that 

(3.21) Ua u in L?(O, T; V) weakly*. 

From (3.20) it follows that 

|(2)- UR(tI)lR =|t d: UU(t) dt cit ti'72 2 E [0, T]; 

therefore the sequence UR,(t) is equicontinuous on [0, T] in the norm I IR Owing to 
(3.18) it is bounded in VR, IIU8(t)IIR < C Vt e [0, T]. As the imbedding of VR into 
HR is compact (see A) the set {UR8(t)} is relatively compact in HR for any t E [0, T]. 
According to the generalization of the Arzela-Ascoli theorem (see, e.g., Kufner, 
John, Fucik [5, p. 42]) there exists a subsequence UR, such that ll - URII(.(1() Tl;lJ) 

0, where w C C([O, T]; HR). With regard to (3.21) - UR, i.e. 

(3.22) JJUR - UR||C(()Q,TI; IIR) 0. 

Further, a(UU8,) C V', and if we denote it by Kxa, >), we conclude from (3.10) and 
(3.18) that X" E L?(O, T; V') and IIXa811 , (O,T; V) < C. Similarly, aM(Um,.) C VM and 
denoting it by KXm, ) M we find X E L (O, T; VMf) and IIXM'111,-(()T;V- < C. 

Therefore, there exist subsequences {x8}, {XM) I such that 

(3.23) JX8 X in L'(0, T; V') weakly*, X E L'(0, T; V'), 

{XM68 XM in L?(0, T; VM) weakly*, X e LO(0, T, VM)- 

(e) Consider a function h(t) E 6D((o, T)), and let us define the function 

h,\t = h' in (ti- I ti],9 i = 1l,...,r, h' = h(ti). 
For a given z e V we choose {z h such that Zh e Vh, IIZ - ZhIl 0, we set v = zhh 

in (3.4), v = zhh' in (3.6) and we sum up. We get 
r r 

(3.24) R (zwA, R)Rh' + \ta(U, zh )hl + Lt 2 a(U'', Zh)hl 
i= I i=2 

r r 

=_-At 22 l(A\Ui Zh z)h + \t ( f 1, Zh ) h' + A\t 2, ( fi-1, Zh )h. 
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Concerning the first term on the left-hand side we have 

(Ui\ Z h ) ' [8dU h)hd 

(d U8 z) h dt + J ( UR z z) h dt 

+ dt ( R, ZR )(hA, - h) dt. 

The last two terms converge to zero and 

J dt (Ra ZR) hdt = -R ( ZR)h 0dt (URq ZR)Rh'dt 

Further, 

A\ta(Ul, zh)h' + A\t z a(U z')h a(U8Z z' )h., dt + R, 
i=2 0 

where 

R = hl {ta(UI. z h a(U" + /t 'Au dt 

+ ,) - 
(a(U 

I 
zh)-a Ui + zt i AU zj hhAt dt -O 

owing to (3.10), E, (3.15) and (3.19). As 

J a(Ua zh)hAtcdtf (KXa zh)hjtdt (X, z)hdt, 

the left-hand side of (3.24) converges to 

- T(UR ZR)Rh dt + f T XK z)h dt. 

From (3.19) and from f E C?'1([O, T]; V') it is easy to prove that the limit of the 
right-hand side of (3.24) is foT K f. z ) h dt. Therefore, we have 

(3.25) d(UR, ZR)R + (x,z)= f z) in D'((0, T)) Vz E V. 

In the same way as in [9] (see the text following (3.50)) we prove that u e WR, 

UR + XR = fR, u()R uo, X f S and that 

(3.26) J Kx' u) dt = - Iu(T)RIR + fKif u) dt. 

(f) We choose v = U in (3.6) and v -u in (3.4). Summing up we get 

r r 

i=1 i=2 

r r 
- 

-At I(Aui, Ui) + At (f 1, ul ) + 
>- 

( i-1 ui) 
i=2 i=2 
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Now, taking into account (3.20) and (3.22), we see that 
r 2 2 r 2 

2 ~~ (~UA,UA)R 1U6(T)RIR -iIU8(0)RIR+ LUJJ (AUR UR I 

-2 Iu(T)RI - 2 IUOR. 

Further, it is easy to show that 

A t a (U'U + a(U' U fTa(U8, U8) dt 0, 

-A\t Y, I(SUl, U ) + l\t[ f1, u) +2 (P1P u dt0 

Thus, with regard to (3.26) 

(3.27) f a(U8,U,)dt IUoIRI u(T)RI2 + (f,U) dtf T(X,u) dt. 

From (3.21), (3.23) and (3.27) it follows that 

lim I[a(u,u - U- ) - a(U , u - U)] cit 0. 

As a(u, u - U8) - a(U8, u - U8) > C(IIU - U8112 (see (3.10)), we have 

lim |/||u - U'6111 dt 0. 

(3.22) gives 

lim 
T | UR - URdR Cit = 0, 

and by means of the last assumption in (2.1) we get (3.8). Also, we have 

f|I[a(u, v) - (x8, v)] dt J [a(u, v) - a(U", v)] dt 

c c0f flu - U8llullvlli dt - 0, 

i.e. 

f[a(u, v)- (X, v)] dt=O Vv E L?(0, T; V). 

Setting v = zh(t), z E V, h E 6D((0, T)), we get (X, z) = a(u, z) Vz E V, hence u 
is the solution of the problem (P') (see (3.25)) and the proof is finished. 

4. Nonlinear Magnetic Field. We consider the problem (1.1 )-(1.3), and we specify 
the boundary condition: 

(4.1) u=O on3aX(O,T). 

We assume that a and aR are polygons. The condition A is satisfied, and . *l1 is a 
norm on V = HQ(Q) (see Example 1). Let V(x1, x2, (), a and the operators AM@(), 
M = R, S, be of the form introduced in Example 2. We also assume (2.4) to be 
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fulfilled, and we want to prove that condition B is satisfied. We have 

[ 2 ap 4l2 aw 23w 34' 
v +~4 C x1ax dx, =IM{UMS)1=1 axi ax, I= 

MMf)E ax, ax, J2 axj axj}d 

f = Ilgrad w112. 

If q and 4' denote the vectors grad 9p and grad 4, respectively, and A denotes the 
matrix 

{aw aw 2 

3axx ax1 

then 

(4.2) (HM(w)p, 4)M f9JTB%Pdx, B=aI+/PA, M 

a - VM(0) / = -IV, 

(I is the unit matrix). We easily find the eigenvalues of B: 

a + 4(/3 +f3)t 

a +(3 -I3DQ. 

If v'(t) < 0, then 

a vM(tf 

a, + g2 
[v 4)' 

if v'(t) > 0 then 

From (2.4) it follows that 

(4.3) CM < MM(t) < CM \/t E [O, Xc), 

and we easily get that 11BI12 = max I Xl, I CM. From (4.2) follows the first inequality 
in (2.3). Concerning the second inequality it is also true because 

(H (w),)) ) M m {(vtA) Igrad 9)112 + ( vM 
2 aW ] 2} dx, 

and the integrand is bounded from below' by 

vm(4)Ijgrad TI2 a cMljgrad TII2 if v' 2 0 

and by 

[vM(() + p (()42] l|grad 912 2 cm||grad qP|12 if v' < 0. 
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The third inequality in (2.3) is obvious. In three dimensions we easily find that 

(Hm(w)T, ) = 4M( ))(curlT) curl q + 'v (() 

X [(curlw)Tcurl p] [(curl w)Tcurl 4] } dx, 

where I = IIcurl w 112, and the proof of (2.3) is similar to that given above. 
We will assume that J E C0([O, T]; L2(Q )) and U0 = gIR where g EHo(Q) 

Further, let us consider a regular family of triangulations which consist of triangles 
belonging either to R or to S, and let us take, for simplicity, piecewise linear 
functions (belonging to C(Q) n Ho(Q)) as trial functions. The approximation gh is 

determined according to E. Obviously, the conditions C, D, are also satisfied. The 
approximate solution Us is determined by (3.7) and by the equations 

(4.4) (AU', UV)L2(R) + Ata(U', v) = At(J', V)L2(g) VV E Vh, U0 IR = gh IR' 

(4.5) (AUi, UV)L2(R) + Atl(UI, v) 

= Atw(U ', v) + At(JI , V)L2(g) VV E Vh, i 2 2, 

where again w(u, v) = l(u, v) - a(u, v), 

a(u, v) - 2 vm(Ilgrad u112) 2 d x , 

l(u, v) =2eMf 3 dx, 

and we assume EM to satisfy (3.1). From Theorem 3.1 we get 

THEOREM 4.1. Under the above conditions we have 

|lu - UlCQ([o,T];L2(R)) O 0, IIU - uLjjlI2((,T;/II,)(&)) 
- 0. 

Now we derive error estimates under the condition that the exact solution is 

smooth in R and in S. For the initial value U? IR we can take u( or any approxima- 
tion uh such that 11uo - UhIIL2(R) < Ch. 

THEOREM 4.2. Besides the above conditions we assume that 

uIM E C([O, T]; H2(M)), M=R,S, u' EL2(0, T; H'(Q)), 

U"IR E L2(0, T; VR) 

Then we have 
r 1/2 

(4.6) {At J 
U(ti) - UiDJ!(1 ) = O(h + At). 

Proof. First, we estimate the Hessians KM of the functionals 

2EMII)II IM - Ja p) = | - Fm(1igrad P112)I dX. 

We have 

(Km(w)fr, 4) M = | MTD dx, D = EMI - B. 
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The eigenvalues ,i of D are of the form ,i = OM - A, where the A's are eigenvalues of 
B. As CM G A G CM (see above) and OM > 'CM, one can easily prove that 

(47) II G EM -YM YM = min(cM,2(eM- 2CM)), O < YM < EM. 

Hence 

|(Km(w)fr, ) mrMIITII IMImlI4/I,M, O <TM = OM YM < OM 

and 

(4.8) IWM(TP w) - wM(4, w)j G TMIIT - II1,MIWIII,M VT, 4, w E VM. 

We denote by ui a modified Clement approximation of u(ti) (see [9, Section 4]). 
For i > 2 we have 

(/, aUV)L2(R) + Atl(u, v) 

= Atw(u2, v) + At(Ji1, V)L2(g) + At(AJ, V)L2(g) 

+ (Au' - Atu'(ti), Uv)L2(R) +?(A(ui - ui), av)L2(R) 

+At[w(ut2, v) - w(u2i-, v)] + At[a(ut2, v) - a(ul, v)]. 

If we prove that 0tE:IIeIIl = O(h2 + At2) where e' = '- U , then (4.6) follows 
by means of Lemma 3 of [9]. Subtracting (4.5) from the above equation and 
choosing v = e', we get 

(At, aei)L2(R) + At{l(Ei, Ei) - [W(u i- e') - w(U'', el)] } 

= (Au' - Atu'(t1), at')L2(R) + (A(ui - U), a' )L2(R) 

+At[a( ci) -a(ul, i)] + At(AJ', Ii)L2(g) + At4w(ui, e') W(u , e)]. 

By (4.8) the second term on the left-hand side is bounded from below by 

Atz {OMIIe |i1 M - 2TM[11i 111IM +116 III M]} 
M 

I 24OAtIjj.ie2 + I At [eMjj.i '2M - TMIICII2,M] yO = min(yR YS) >0. 
M 

Therefore, if we sum up from i = 2 to i = r, we find that the left-hand side is 
bounded from below by 

r 

-2(e', G)L2(R) + 2y0At 2 ileiIl - 
2T'1ItIIe'Il TI = max(TR , Ts). 

i=2 

The first three terms of the right-hand side are equal to the right-hand side of the 
equation (4.21) in [9]. After summing up we get as in [9] the following bound from 
above: 

r 
IY At 2 liei12' + C(h2 + At2). 

i=2 

Here, the constant C depends on u. The same result is true for the remaining terms 
of the right-hand side. It follows that 

r 

(4.9) At t2 lieII2 < C{II1'I12(R) + 2 AtIIe'12 + h2 + At2}. 
i=2 
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For i = 1 we have 

(At2, UIV)L2(R) + Ata(au, v) 

=(Au - Atu'(t,), av)L2(R) + (?(u' - u'), av)L2(R) 

+??t[a(u', v) - a(u', v)] + At(PJ, V)L2(g). 

In a similar way we obtain 

(AE' r J)L2(R) + At[a(U, El) - a(U', el)] 

= (\u, - l\tu'(t), ac')12(R) + (\(ui - u' ), E '2(R) 

+?t[a(u', c') - a(u', -I)]. 

By (3.10) and the assumption a E L?(R), a : a0( > 0 we easily get 

UOIICIIL2(R) + COtjtI'I ? CLI I ILO2(R) + h + 2tt] + 7C0XtlIc Il, 

so that 

lie llL22 + AtllE 1l12 
- 

O(h2 + At2). 

This together with (4.9) proves the theorem. 
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